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SUMMARY

A procedure for the numerical solution of the complete isothermal elasto-
hydrodynamic lubrication problem for rectangular contacts is outlined. This
procedure calls for the simultaneous solution of the elasticity and Reynolds
equations. In the elasticity analysis the conjunction is divided into equal
rectangular areas. It is assumed that a uniform pressure is applied over each
area, In the numerical analysis of the Reynolds equation the parameter ¢ =
QH 12 is introduced in order to help the relaxation process. The analysis
couples the elasticity and Reynolds equations, going from the inlet to the
outlet without making any assumptions other than neglecting side leakage.

By using the procedures outlined in the analysis the influence of the
dimensionless speed U, load W, and materials 6 parameters on minimum film
thickness is investigated. Ten cases are used to generate the minimum-
film-thickness relationship.
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The most dominant exponent occurs in association with the speed parameter; the
exponent on the load parameter is very small and negative. The materials pa-
rameter also carries a significant exponent, although the range of the param-
eter in engineering situations is limited. The five dimensionless speed
parameter values used in obtaining the preceding equation are varied over a
range six times the lowest speed value. The four dimensionless load values
are varied over a range 1.8 times the Towest load value. Conditions corre-
sponding to the use of solid materials of bronze and steel and lubricants of
paraffinic and naphthenic mineral oils are considered in obtaining the expo-
nent in the dimensionless materials parameter.

Plots are presented that indicate in detail the pressure distribution,
film shape, and flow within the contact. The .characteristic pressure spike is
clearly in evidence as is the parallel film shape through the central portion
of the contact. Minimum film thickness occurs near the outlet of the contact.

INTRODUCTION

The recognition and understanding of elastohydrodynamic Tubrication rep-
resents one of the major developments in the field of tribology in the twen-
tieth century. The revelation of a previously unsuspected regime of Tubrica-
tion not only explained the remarkable physical action responsible for the
effective Tubrication of many nonconformal machine elements 1ike gears and
rolling-element bearings, but also brought order to the complete spectrum of
lubrication regimes, ranging from boundary to hydrodynamic.

Historically one of the first to study the effect of elastic distortion
in highly loaded contacts was Meldahl (ref. 1). He examined the effect of
high load on film shape and pressure distribution for a constant-viscosity
lubricant. The first attempt to analyze both elastic and viscous effects in
elastohydrodynamically lubricated contacts was done by Grubin and Vinogradova
(ref. 2), who managed to incorporate both the effects of elastic deformation
and the viscosity-pressure characteristics of the lubricant in the inlet anal-
ysis of hydrodynamic lubrication of nonconformal contacts. Their work dealt
mostly with a line contact, and it was assumed that the shape of the elastic-
ally deformed solids in highly loaded lubricated contacts was the same as the
shape produced in dry (Hertzian) contacts. This assumption facilitated the



solution of the Reynolds equation in the inlet region of the contact and en-
abled the separation of the solids in the central region of the contact to be
determined with commendable accuracy.

Dowson and Higginson (ref. 3) obtained an empirical formula for the iso-
thermal-Tine-contact elastohydrodynamic lubrication problem. This formula
showed the effect of speed, Toad, and material properties on minimum film
thickness and was based on their theoretical solutions. In the procedure they
adopted, the computed film shape was compared with the shape of the elastic-
ally deformed solids, and then the pressure curve was modified to improve the
agreement hetween the two shapes. These calculations were performed on hand-
operated desk calculating machines. Jacobson (ref. 4) solved the elastohydro-
dynamic Tubrication problem for a spherical contact under pure rolling condi-
tions and a non-Newtonian lubricant with a limiting shear strength. The shear
strength of the lubricant limited the pressure gradients and shear stresses in
the oil. Therefore no pressure spikes were seen in the theoretical solutions.

Hamrock and Dowson (ref. 5) were able to successfully obtain a theoreti-
cal approach to coupling the elasticity equation with the Reynolds equation
for elliptical contacts such as those normally found in gears and ball bear-
ings. Hamrock and Dowson's work on elastohydrodynamic lubrication (ref. 6)
considered the complete spectrum of contact geometries (ranging from point to
line contacts), materials (hard and soft), and lubricant availability (fully
flooded or starved conditions).

To obtain a better understanding of the failure mechanism in machine ele-
ments, the next generation of elastohydrodynamic lubrication analysis should
incorporate such effects as

(1) Surface roughness effects
(2) Non-Newtonian effects
(3) Temperature effects

The foundation studies that produced the complete elastohydrodynamic lubrica-
tion solutions for rectangular contacts given in the present report will be
used in further studies incorporating these effects. To incorporate these
effects in an initial study, rectangular contact analysis, often referred to
as "1ine" or "one dimensional” contact analysis, should be used instead of
elliptical contact analysis because of the added complexity of considering
these effects.

The analysis in the present report couples the elasticity and Reynolds
equations, going from the inlet to the outlet without making any assumptions
other than neglecting side leakage. This analysis may thus be used as the
foundation for the more complicated analysis incorporating surface roughness
effects, non-Newtonian effects, and temperature effects.

In the results the influence of dimensionless speed, load, and materials
parameters on minimum film thickness was investigated for a contact fully
immersed in lubricant (i.e., fully flooded). The dimensionless speed and load
parameters were varied over a range of 11 and 2-1/2 times, respectively. Con-
ditions equivalent to using solid materials of bronze and steel and lubricants
of paraffinic and naphthenic mineral oils were considered in obtaining the
exponent on the dimensionless materials parameter. Ten cases were used in
obtaining the fully flooded film thickness formula. A fully flooded condition
is said to exist when the inlet distance of the contact ceases to influence
the minimum film thickness in any significant way. The inlet distance of the
contact is defined as the distance from the center of the contact to the edge
of the computing area. Besides the film thickness calculations that were
made, calculation of the force components, shear forces, coefficient of fric-
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tion, and center of pressure were also performed. A simple formula is pro-
vided that described the location of the center of pressure relative to the
inlet of the contact and as a function of the dimensionless load and speed
parameters for steel surfaces.

Computer plots are presented that indicate in detail the pressure spike
and minimum film thickness. Plots are also shown of the parallel shape of the
reduced pressure, the Poiseuille term, and the mass flow per unit length with-
in the contact.

SYMBOLS

A constant defined in eq. (27)

B b/b

b semiwidth of Hertzian contact, 2RY2W/w, m

b b/n, m

C constant defined in eq. (28)

C1,..-,Cq constants

D defined by eq. (19)

E modulus of elasticity, N/m2

E! effective elastic modulus,
2AL(1 - v§)[Eq] + T(1 - vB)/EpTh N/m?

F dimensionless shear force

f shear force per unit length, N/m

G dimensionless materials parameter, oF'

H dimensionless film thickness, h/R

Hmin dimensionless minimum film thickness, hyin/R

Bmin dimensionless minimum film thickness obtained from
lTeast-squares fit of data

(ﬁﬁin)D dimensionless minimum film thickness obtained from Dowson
(ref. 7)

(ﬁﬁin)D dimensign]gss minimum film thickness obtained from Dowson

H and Higginson (ref. 3).
Ho dimensionless constant defined in eq. (23)

h film thickness, m



Pmin minimum film thickness, m
K | ~ dimensionless mass flow per unit length
k mass flow per unit length, kq/(s m)
L constant defined in eq. (29)
M constant defined in eq. (30)
n number of nodes in semi-axis of contact
p dimensionless pressure, p/E'
p pressure, N/mZ
Q dimensionless reduced pressure, g/E’
reduced pressure, N/m2
R effective radius in x-direction, m
r curvature radius, m
S geometrical separation, m
T defined in eq. (67)
§] dimensionless speed parameter, ngu/E'R
u surface velocity in direction of motion, (uz * up)/2, m/s
V1 (Fmin = Hmin) 100/Hmin
V2 [(ﬁﬁin)o - ﬁﬁinjloolﬁﬁin
W dimensionless load parameter, w,/E'R
W load, N/m
X dimensionless coordinate, x/b
ch location of dimensionless center of pressure, xcp/b
X coordinate in direction of motion, m
Xcp location of center of pressure, m
z coordinate in direction of film thickness, m
a pressure-viscosity coefficient of lubricant, m2/N
v angle defined in eq. (43)

s elastic deformation, m



e N )

€ coefficient of determination

n absolute viscosity at gage pressure, (N s)/m2
n dimensionless viscosity, n/ng

nQo viscosity at atmospheric pressure, (N s)/m?
u coefficient of friction

v Poisson's ratio

p Tubricant density, kg/m3

o dimensionless density, o/oQ

00 density at atmospheric pressure, kg/m3

® qH3/2

Subscripts:

a solid a

b solid b

X coordinate in direction of motion

z coordinate in direction of film thickness
THEORY

Reynolds Equation

The general approach to the numerical solution of the one-dimensional
rectangular or Tine-contact problem covered in this report is similar to the
method used by Hamrock and Dowson (ref. 5) in solving the two-dimensional
elliptical contact problem in elastohydrodynamic lubrication. The Reynolds
equation for one-dimensional flow where side leakage is neglected can be
written as

3
d_<g_ _d_p)= 12y dloh) (1)

where u = (uy * up)/2 is the mean surface velocity or the entraining
velocity in the x-direction.
Letting

X

x/b, o = olog, M = n/ngs H = h/R, and P = p/E' (2)



where

equation (1) can be rewritten in dimensionless form as

—,3
d [eH” dP 2Wd ,—
&<—;—a>= 24U y7— ax (o) (5)

where

un

0
U= (6)
is the dimensionless speed parameter,

W

z
W =R (7)

is the dimensionless load parameter, and w, is the load per unit width.

Figure 1 shows the radius of the rollers used in defining equation (3).
It is assumed that convex surfaces, as shown in figure 1, exhibit positive
curvature and concave surfaces, negative curvature. Therefore, if the center
of the curvature lies within the solid, the radius of curvature is positive;
if the center of curvature lies outside the solid, the radius of curvature is
negative.

fa
{D)

(a)

{a) Two undeformed rollers.
{b) Equivalent cylindrical solid near plane.

Figure 1, - Rollers and equivalent roiler.
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The viscosity of a fluid may be associated with the resistance to flow,
with the resistance arising from intermolecular forces and internal friction
as the molecules move past each other. Because of the large pressure varia-
tion in the lubricant films the viscosity of the lubricant is not constant in
elastohydrodynamically lubricated contacts. Barus (ref. 8) proposed the
following formula for the isothermal viscosity-pressure dependence of Tiquids:

n = ngeoP (8)
In dimensionless form this equation can be written as

;=g—o-=e‘“’ ' (9)
where

G = of . | | . (10)

is the dimensionless materials parameter.
Substituting equation (9) into equation (5) g1ves

d 3 -GP dP 2Wd —
dx( H e dx) = 24U _17——_(17 (pH) (11)

Grubin and Vinogradova (ref. 2) were the first to introduce the writing of the
pressure and viscosity in terms of a reduced pressure as

Q=% =g (1-e (12)
and

dQ  _-GP dp

E(-= e a . (13)

Note that, as P » =, Q » 1/G. Substituting equation (13) into equation (11)
gives

d 3 dQ> _ 2w d
dx( Y 4_(oH) (14)
Density

For a comparable change in pressure the density change is small as com-
pared with the viscosity change. However, very high pressures exist in
elastohydrodynamic films, and the 1iquid can no longer be considered as an
incompressible medium. From Dowson and Higginson (ref. 9) the dimensionless
density for mineral o0il can be written as

- o 0.6 E'P
P =g T l*yvT17¢c7P (15)

where E' s given in gigapascals.



Film Shape

The film shape can be written simply as
h(x) = hg * S(x) * §(x) (16)
where
ho constant
S(x) separation due to geometry of undeformed solids
§(x) elastic deformation
The separation due to the geometry of the two undeformed rollers shown in
figure 1(a) can be described by an equivalent cylindrical solid near a plane,
as shown in figure 1(b). The geometrical requirement is that the separation
of the two rollers in the initial and equivalent situations should be the same

at equal values of x. Therefore using the parabolic approximation we can
write the separation due to the undeformed geometry of the two rollers as

S(x) = (17)

Figure 2 shows a rectangular area of uniform pressure width 2b. From
Timoshenko and Goodier (ref. 10) the elastic deformation at a point x on the
surface of a semi-infinite solid subjected to a pressure p at the point

X} can be written as

5
b In (X - x1)2 dxy (18)

Since the pressure is assumed to be uniform over the rectangular area, the
pressure can be put in front of the integral. The integration of equation

(18) then results in the following:

Ao

where

}mm - 2

—- X >
<—)_('X1—_——I -—Xl X
X

Figure 2. - Surface deformation of semi-infinite body subjected
to uniform pressure over rectangular area,



D = b[(X = B) In(X = B)2 = (X + B) 1n(X + B8)Z + 4B(1 - 1n b)] (20)
and

b semiwidth of Hertzian contact

B b/b

b b/n

n number of nodes within semiwidth of Hertzian contact

Now the_term s§(x) 1in equation (19) represents the elastic deformation at a
point x due to a rectangular area of uniform pressure p and width 2b. If
the contact is divided into a number of equal rectangular areas, the total
deformation at a point x due to the contributions of the various rectangular
areas of uniform pressure in the contact can be evaluated numerically. The
total elastic deformation caused by the rectangular areas of uniform pressure

within a contact can be written as

2

s =2 2 e, (21)
i=1,2,...

where

j=|k-i]+1 (22)

Therefore, substituting equations (17) and (21) into equation (16) while
writing the film thickness in dimensionless form gives

2 (.2
h 1] x2 (b2 | 2
He =R = H +F€["2 (—R> +2 2 PiDj] (23)

i=1,2, ...

Phi (o) Solution

Having defined the density and film thickness, we can return to the solu-
tion of the Reynolds equation. The dimensionless reduced pressure Q given
in equation (14) plotted as a function of X exhigits a very localized pres-
sure field with high values of dQ/dX and d2Q/dX2. Such a condition
with high gradients is not welcomed when performing numerical analysis by
relaxation methods. Therefore, as discovered by Hamrock and Dowson (ref. 5),
to produce a much gentler curve, a parameter ¢ is introduced, where

~GP)

3/2
o = QH3/2 - H (IG— e (24)

The dimensionless reduced pressure Q 1is smaller at large values of film
thickness H and large when the film thickness is small. The ¢ substitu-
tion also has the advantage that it eliminates all terms containing deriva-
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tives of products of H and Q or H and ¢. Therefore, from equation
(24) while expanding terms within equation (14), we get

3/2d [—de\ 38d [~ 1/2 dH\ Wd
H Ex‘<° d—x‘)‘ 2 dx("H dx)“ 240 Y= o (PH) (25)

The first step is then to replace equation (25) by a finite difference
approximation. The relaxation method relies on the fact that a function can
be represented with sufficient accuracy over a small range by a quadratic
expression. With standard finite central-difference representation, equation

(25) can be written as

Ai¢i+1 + Ci¢i—1 - Lo, - M, = 0 (26)
where

Aj = 3541 ¥ 05 (27)
Ci = oqap " 305 (28)

Ly = 4legay *oy)

, 100egg WM (Byag = BHy * Hy ) + oy y YR g (Hyyg - H; * 3H; )] (29)
372
:

2W (2)— =
W £ (8)Fiottia - 7oty
i~ y3/2
:

(30)

Figure 3 shows the uniform placement of the nodes within the contact. This
nodal structure was used in all of the results. The number of nodes within a
semicontact width was 120 throughout all calculations.

The following boundary conditions have been adopted:

(1) At the inlet and outlet the pressure was set to zero. This implies
that Q@ and ¢ are also zero at these positions.

L—Hertzian zone——

Center of
Inlet 120 Nodes — __ contact

N T~

Qutlet

>
N =<
N >~ X

480 Nodes — 1«—180 Nodes-—

660 Uniform nodes

Figure 3. - Nodal structure for numerical calculations,



START
Y

Read parameter values
and approximate pressure
distribution

]

Calcutate oil film shape
and density distribution
using approximate
pressure distribution

y

»] Calculate coefficients
in Reynolds equation
loop

!

Calculate pressure
distribution by
iteration. Loop 1

Y

Calculate new film shape and
density distribution and
calculate load by using new
pressure distribution

Y

No Is new pressure
- distribution almost
Loop 2 | equal to old?

¥ Yes
Is applied load Calculate power loss,
equal to load Yes force components,
from-pretssure and coefficient
distribution? of friction
No

Move surfaces closer to
each other if pressure
distribution gives too low

~Toop3 | load andvice versa Y
calculate new film thick- STOP
ness distribution

Figure 4. - Fiow chart of computational procedures used in
elastohydrodynamic lubrication studies.

(2) At the cavitation boundary

dp
P=gr=0 (31)

Eauation (26) represents a system of simultaneous equations that was solved by
the standard Gauss-Seidel iterative method. A flow chart shown in figure 4

11
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describes the computational procedures used in the elastohydrodynamic lubrica-
tion studies.

Mass Flow Rate Per Unit Length

The mass flow rate per unit length for elastohydrodynamically lubricated
contacts can be written as

3

k = uph - §5- $P (32)
Making use of equation (2) while rearranging terms gives
2
onE 'R 2
0 - H r dP
k = ( ) (pH)(lZU - — ——) (33)
12 g ey 2W dX

Making use of equation (13) allows this equation to be rewritten as

2
__k 4 H  Jfn dQ
K = ogUR = °H<1 - 250 Y72 dX) (34)

The second term on the right side of equation (34) is the Poiseuilie or pres-
sure term. Writing the reduced pressure gradient in equation (34) in a cen-
tral difference form and rearranging the terms, we get

K,
Quyq = Q5_y * 240 ‘,“_m (_nz.) iz.<1 - - ; ) (35)
: P
1

i

This expression enables the reduced pressure to be written in terms of flow,
film shape, and density at the preceding location.

Force Components

Figure 5 shows the force components acting on the two solids along with
the film geometry in a portion of a concentrated contact. Conventionally only

Wozgr—32 Y
i
-dh Yi
w17/ lwm
z Wa fb
Waz h
N 117 A
——dxh—-— _LI_»

Figure 5. - Force components.
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the z-components of the normal forces acting on the solids (wy; and wyy)
are considered. However, it was felt that the tangential x-components (wax
and wpy), shear forces (f; and fy), coefficient of friction u, and
center of pressure x. should also be expressed and quantitative values
obtained for each of these expressions. The normal z-component of the force
per unit length acting on the solids can be written as

WZ = Waz = sz = fp dX (36)

Using the dimensionalization given in equation (2) gives this equation as

w-w—z—-Edex—§ (_['de)2 - (37)
T ER T r Tow

In equation (37) W is usually referred to as the dimensionless load param-
eter.

The tangential force component wyx for solid a is zero. The tangen-
tial force component per unit length for solid b is not zero and can be
written as

dh
Wy, = - fpdh:—fpd—x-dx (38)
Using integration by parts gives
= _[phT° dp
Wy = —[PhTZ + fh 3 dx (39)

where i and o vrefer to inlet and outlet edge of the computing zone, re-
spectively.

However, the pressure at the edge of the inlet and at the edge of the
outlet is zero. Using the dimensionalization given in equation (2) gives

W
bx dpP
o = iR = JH Gy X (40)

The resulting force components per unit length can be written as

W
a 2 2
Wy = E'R = Wax ¥ Waz = Wy, (41)
"y 2 ? 2 2
wb = FTﬁ; = Wox * Wy = Wpx * W (42)
w W
v = tan 1 (WE£> ~ tan! <—55) (43)
z

Shear Forces

The shear force per unit length acting on solid a (shown in fig. 5) can
be written as

13
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du
£ =f(n~—) dx
a dz 720

From Hamrock and Dowson (ref. 6, p. 141, eq. 5.30) we can write

du _ (2z - h) dp _ n(ug - up)
"4z T T 7 dx h

Substituting this equation into (44) gives

) h dp n(ua - ub)
fa= :/ﬂ[ﬁ'af * h dx

(44)

(46)

Making use of equation (39) while writing equation (46) in dimensionless terms

gives

wbx /

The shear force per unit length acting on solid b can be written as

(&)
n - dx
f dz 7=h

Making use of equation (45) gives equation (48) as

W
_ "bx ’2w f n
Fb -2 (u + uy U dx

Note that for equilibrium to be satisfied the following must be true:

fy

Fa—Fb+wbx=0

- W

az bz = 0

The coefficient of friction is written as

Center of Pressure

A calculation very useful in traction studies is the location of the
center of pressure. The appropriate equation is

(47)

(50)

(51)



1
xCp =7N_2fpx dx (53)

Writing this in dimensionless form gives

X -
_cp _ ‘/if
Xep = £ = YiawJ PX o (54)

The Tocation of the center of pressure indicates the position on which the
resulting force is acting. The fact that the resulting force is not acting
through the center of the roller creates a rolling resistance in the form of a
moment. This has a significant effect in the evaluation of the resulting
forces and power loss in traction devices and other machine elements.

RESULTS
Dimensionless Grouping

From the variables of the numerical analysis the following dimensionless
groups can be defined:

Dimensionless film thickness:
h
H=g (55)

Dimensionless load parameter:

where W, is the load per unit length.

Dimensionless speed parameter:
nau
0
U = R (57)
Dimensionless materials parameter:
G = oF' (58)

The dimensionless film thickness for a rectangular contact can thus be
written as a function of the other three parameters:

H = f(W, U, G) (59)

The most important practical aspect of elastohydrodynamic Tubrication theory
is the determination of the minimum film thickness within the contact. There-

15



16

Dimensioniess film thickness, H

Dimensioniess Poiseuille term

Loxio®  25xa07
— —

Film shape
8 o 20/
o
p}
a
61— S15—
g
5
A ELO—
E
[=]
2 57 .
_~ Hertzian
" pressure
(a) |
0 — 0
4000711 2.0x1_0'4 Reduced pressure
3.5— o ®
e
30 2 s
8
25— o
S
2
20— 2 Lo
g
15— 5
b
L0— g 5
e Hertzian
5 contact
(b} region
0 0 l I J
3.0d05
1.o— —
Fliow
B
8 25
b X
_%:‘ 2.0 .
P Poiseuille term
’ 8
s L5
2 2
%)
E Lo
0 —
S R
-2 Hertzian con-
) tact region
-4l tc 1 | o—rt—_|
0 160 320 480 640

Nodes, X-axis

(a) Dimensionless pressure and film thickness.
(b) Dimensionless reduced pressure and ®,
(c} Dimensionless flow and Poiseuille term.

Figure 6. - Representative variations of dimensionless
pressure, film thickness, and reduced pressure, &,
dimensionless flow, and the Poiseuille term orif(-axis
for dimensionless speed parameter U of 1x10°
dimensionless load parameter W of 1. 638x10'5, and
dimensionless materials parameter G of 5000.



fore, in the fully flooded results to be presented, the dimensionless param-
eters (W, U, and G) will be varied and the effect on the minimum f3ilIm
thickness will be studied.

Representative variations of dimensionless pressure, film thickness,
reduced pressure, ¢, dimensionless flow, and the Poiseuille term on the
X-axis are shown in figure 6. Figure 6(a) shows the variation of dimension-
less pressure and film thickness on the X-axis for U = 1.0x10" 1, W =
1.638x10-2, and G = 5000. The inlet region is to the left and the outlet
is to the right in this and each of the remaining figures to be presented.
The Hertzian pressure is also shown in this figure. The characteristic pres-
sure spike is clearly evident in this figure as is the parallel film shape
through the central part of the contact, with a minimum film occurring near
the outlet of the contact.

Variation of d1mens1on1ess rgduced pressure Q and ¢ on the X-axis
for U= 1.0x10-11 = 1.638x1072, and G = 5000 1is shown in figure
6(b). Recall that the reduced pressure is defined in equation (12) and ¢ in
equation (24). Figure 6(b) shows that the reduced pressure Q is constant
within the contact and that ¢ 1is constant in part of the contact outlet.

Figure 6(c) shows the variation_of dimension]esg flow and the Poiseuille
term on the X-axis for U = 1.0x10-1l, W = 1.638x10-°, and G = 5000.
Equation (34) defines the mass flow rate per unit length, and the Poiseuille
term is the reduced pressure gradient term of equation (34). In figure 6(c)
the flow is constant throughout the contact. Great care was taken to assure
that this was true for all the results to be presented. Slight adjustments in
the pressure profile were necessary in the inlet region to assure that the
flow was constant in that region. The Poiseuille term approaches 1 at the
inlet and zero in the Hertzian contact region except for having negative
values from the pressure spike to the outlet.

Influence on Load

Changes in the dimensionless load parameter W can be achieved while
keeping the other parameters constant by changing only the normal applied load
per unit length w;, in equation (56). The values at which the remaining
parameters U and G were held constant during the calculations were

U= 1.0x10-11

(60)

G 5000

Four values of the dimensionless load parameter W and the corresponding
values of minimum film thickness Hpi, obtained from the elastohydrodynamic
lubrication theory developed earliier are shown in table I. These four pairs
of data were used to determine an empirical relationship between the dimen-
sionless Toad and the minimum film thickness.

: C
. “2
Hm_1‘n = C1w

(61)
By applying a least-squares power fit to the four pairs of data (Wi,

Hnmin,i)» 1= 1,...,4], the values of C; and Cp were found to be
c]'2°6.33x10-6" and Cp = -0.1056 = 0. b1 Therfore the influence of

Toad on minimum film thickness can be written as

17
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Hmin e W (62)

In addition to the least-squares fit, a coefficient of determination e
was obtained. The value of e reflects the fit of the data to the resulting
equation: unity representing a perfect fit, and zero the worst possible fit.
The coefficient of determination e for these results was 0.9856, which is
excellent. _

Figure 7 shows the variation of dimensioniess pressure and film thickness
on the X-axis for two values of dimensionless load W (1.638x10~2 and
3.0x10‘5). The values of the dimensionless speed and materials parameters
were held fixed as described by equation (60). Figure 7 shows that although
the pressure distribution changes considerably, the minimum film thickness
is only slightly affected. This illustrates the slight effect of the dimen-
sionless load parameter W on minimum film thicknesses, as described in
equation (62).

Influence of Speed

If the surface velocity in the x-direction is changed, the dimensionless
speed parameter U 1is modified as shown in equation (57), but the other dimen-
sionless parameters (W and G) remain constant. The values at which these di-
mensionless parameters were held constant in the calculations performed to
determine the influence of speed on film thickness were

W = 2.048x10~°

(63)

G = 5000

Values of the dimensioniess speed parameter U and the corresponding
minimum film thickness Hyqn as obtained from the elastohydrodynamic lubri-
cation of rectangular contacts developed earlier in the report are presented in

5x10-3
1.0x10-4
— '
\
45— \
g 5 L
S g 3
£ ¢— =
£ g :
b= E ]
8 g 2 /
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‘= 15 /
a = load, /
g W /
8 L 1 Z o 1638107
—_ 30 \\
ol_ 0 N\

X-axis

Figure 7. - Variation of dimensionless pressure and film
thickness on X-axis for two values of dimensionless
load.



table II. Calculations were performed for five values of dimensionless speed
parameter covering nearly an order of magnitude. The solutions enabled the
relationship between minimum film thickness and the speed parameter to be
written in the form

C

= 4

in = C3Y (64)
By app1y1nq a least-squares power fit to the five pairs of data [(

Hmm ), i=1, ..., 5], the values of C3 and Cq were found to be

C3 = 1179 2 and Cq = 0.70640 = 0.71. The coefficient of determination

e for these results was excellent at 0.9992. Therefore the influence of
speed on minimum film thickness can be written as

T 0.71

Mg = Y (65)

Figure 8 shows the variation of dimensionless pressure and_film thickness
on the X-axis for two values of dimensionless speed U (O.leO‘1 and
3.0x1071Y). The values of the dimensionless load and materials parameters
were held fixed as described by equation (63). This figure shows that the
pressure at any location in the inlet region rises in going from the lower
speed to the higher speed. This result is consistent with the elastohydro-
dynamic Tubrication theory of elliptical contact given by Hamrock and Dowson
(ref. 5). Note that the pressure spike moves more toward the outlet for the
Tower speed than for the higher speed. A typical elastohydrodynamic film
shape with an essentially parallel section in the central region is also shown
in figure 8. There is a considerable change in film thickness as the dimen-
sionless speed is changed, as indicated by equation (65). This illustrates
most clearly the dominant effect of the dimensionless speed parameter U on
the minimum film thickness in elastohydrodynamically lubricated contacts.

Lox0d  axo3

\
“w a 3|— \
R \ !
3 4 2 \\ Pressure
= 8 \
E (=% \
= 92— \
a 2 \
2 44— § o\
g § Dimensionless \
< E speed, A\
E o 14— U ,
L ———— o5l N ] [
— 3.0 Ve

0— 0

Figure 8. - Variation of dimensionless pressure and film
thickness on X-axis for two values of dimensionless
speed.
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h . = 3,07
min (E|)0.03w0.11

Influence of Material Properties

A study of the influence of the dimensionless materials parameter G on
minimum film thickness has to be approached with caution since in practice it
is not possible to change the physical properties of the materials, and hence
the value of G, without influencing the other dimensionless parameters con-
sidered earlier. Equations (56) to (58) show that as either the materials of
the solids (as expressed in E') or the lubricant (as expressed in =ng and
a) are varied, not only does the materials parameter G change, but so do the
dimensionless speed U and load W parameters.

The results obtained from calculations performed for three values of the
dimensionless materials parameter are summarized in table III. A general form
of these results, showing how the minimum film thickness is a function of the
dimensionless materials parameter, is written as

Ch
T = C5G (66)
where
Hm1'n
T = (67)
7T =
U0 71w 0.11

In equation (67) the exponents have been rounded off to two significant

figures so that any error would be absorbed in Cg, given in equation (66).

By applying a least-squares power fit to the three pairs of data, the values

of Cg5 and Cg were found to be Cg = 3.12 and Cg = 0.5670 = 0.57.

The coefficient of determination for these results was 0.9969, which is excel-
lent. Therefore the effect of the dimensionless materials parameter on minimum
film thickness can be written with adequate accuracy as

- 0.57
oo = G (68)

Minimum-FiIm-Thickness Formula

The proportionality equations (62), (65), and (68) have established how
the minimum film thickness varies with the load, speed, and materials param-
eters, respectively. This enables a composite dimensionless minimum-filmthick-
ness formula for a fully flooded, isothermal elastohydrodynamic rectangular

contact to be written as

- 0.71.0.57 -0.11
o = 3.07 U G W (69)

In equation (69) the constant 3.07 is different from Cg = 3.12 mentioned
earlier to account for the rounding off of the materials-parameter exponent.
In dimensional terms this equation is written as

0.57,0.4 0.71
a R

(ung) (70)

Z




From this equation we find that the minimum film thickness depends inversely
on the effective elastic modulus E' and load per unit Tength w;. Both
have small exponents, indicating that the minimum film thickness hyi, is
only slightly affected by the effective elastic modulus and load per unit
length. In contrast to these effects from equation (70) we find that the fiim
thickness depends directly on the pressure-viscosity coefficient of the lubri-
cant «, the geometry R, the surface velocity in the direction of motion wu,
and the viscosity at atmospheric pressure ng. From the values of the expo-
nents on these parameters (a, R, u, and np) it is clear that they have a
dominating effect on the minimum film thickness.

It is interesting to compare equation (69) with earlier derived minimum-
film-thickness formulas. Dowson and Higginson (ref. 9) obtained the following
expression: .

0.7,0.6,-0.13 . :
(Hhin)DH =1.6 UG "W : (71)

It was found that this equation produced a positive exponent on the effective
elastic modulus, which is contrary to physical intuition. This equation was
therefore revised by Dowson (ref. 7) as :

0.7 0.54w—0.13 (72)

(Hmin) = 2.65 UG

D
The powers of U, G, and W 1in equations (69) and (72) are quite similar con-
sidering the different numerical procedures on which they are based.

The Hamrock and Dowson (ref. 11) ellipical contact minimum-film-thickness
formula for very long elliptical contacts, where the ellipticity parameter is
large and the elliptical contact approaches a rectangular contact, is
expressed as

0.68 0.49w—0.073 (73)

(H.) =3.631U
min’yy

G
[t is interesting to compare equation (73) with equation (69). The powers of
U, 6, and W are again seen to be quite similar.

Table IV gives the 10 cases used in obtaining equation (69). In this
table Hpyin corresponds to the minimum film thickness obtained from the

elastohydrodynamic lubrication rectangular contact theory developed earlier in
this report and Hpyin 1is the minimum film thickness obtained from equation
(69). The percentage difference between these two values is expressed by

Vi, which is defined as

H . ~H.
v1 - <_ll%$_7__ml?> 100 (74)
min

In table IV the values of Vi are within #2 percent. The dimension-
less minimum film thickness obtained by Dowson (ref. 7) and expressed in
equation (72) is also shown in table IV as (Hmin) . The percentage

D
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difference between this film thickness and that of Hpj, 1is expressed by

Vo, where

V., = 100 (75)

In table IV the values of Vo are within +4 to +8 percent, meaning that the
Dowson (ref. 7) formula produces 4 to 8 percent larger film thickness than
that obtained from the present analysis.

Figure 9 compares the pressure profile as obtained from_ Dowson and
Higginson (ref. 9) with the present results for U = 1.0x10"1 , W= 3.Ox10‘5,
and G = 5000. The Hertzian pressure is also shown in this figure. The
Dowson and Higginson (ref. 9) profile is exactly equivalent to the Hertzian
pressure for most of the contact region, but the present results are somewhat
lower than the Hertzian pressure. The pressure spike is higher in magnitude
in the present results and located farther away from the exit of the contact
than in the results obtained by Dowson and Higginson (ref. 9).

Table V shows the values of the load components, the coefficient of fric-

tion, and the Tocation of the center of pressure for the 10 cases presented in
table IV. The values of the dimensionless load, speed, and materials param-
eters corresponding to a particular case can be obtained from table IV. Table
V shows that the tangential force components are three orders of magnitude
less than the normal force components. Also the coefficient of friction
decreases with increasing load and increases with increasing speed. Table V
gives values of the location of the center of pressure for the 10 cases
evaluated. In all the cases the center of pressure is in front of the center
of the Hertzian contact. An approximate formula for the location of the
center of pressure is a function of the dimensionless load and speed and is
given as

Present result

== ——=— Dowson and Higginson
(ref. 9)

Pressure

r Hertzian
/ pressure

X-axis

Figure 9. - Comparison of pressure profile of present resuits with that
of Dowson and Higginson (ref. 9).
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X =-0.05U

H in = 3.07 U

0.44,-1.13
cp W (76)

where X.p 1is measured from the center of the Hertzian contact. This
formula was obtained by using the data in table V and is valid only for steel
surfaces. The value obtained from the approximate expression of the location
of the center of pressure (eq. (76)) is shown in the last column of table V.
The maximum error in calculating the location of the center from equation (76)
as compared with the exact solution is 0.89 percent of the Hertzian half
width, which is excellent. Using equation (76) for bronze surfaces gives an
error of up to 3.54 percent of the Hertzian half width. This larger error is
due to having only two cases of bronze material in the formulation of the
expression.

CONCLUDING REMARKS

A procedure for the numerical solution of the complete isothermal elasto-
hydrodynamic lubrication problem for rectangular contacts has been outlined.
This procedure calls for the simultaneous solution of the elasticity and
Reynolds equations. In the elasticity analysis the conjunction was divided
into equal rectangular areas. It was assumed that a uniform pressure was
applied over each e1e§?nt. In the numerical analysis of the Reynolds equation
the parameter ¢ = QH 2 was introduced in order to help the relaxation
process. The analysis coupled the elasticity and Reynolds equations, going
from the inlet to the outlet without making any assumptions other than
neglecting side leakage.

By using the procedures outlined in the analysis the influence of the
dimensionless speed U, load W, and materials G parameters on minimum
film thickness was investigated. Ten cases were used to generate the mini-
mum-film-thickness relationship

0.71.0.57,~0.11

mi G W

The most dominant exponent occurred in association with the speed parameter;
the exponent on the load parameter was very small and negative. The materials
parameter also carried a significant exponent, although the range of the
parameter in engineering situations is limited. The five dimensionless speed
parameter values used in obtaining the preceding equation were varied over a
range six times the Towest speed value. The four dimensionless load values
were varied over a range 1.8 times the lowest load value. Conditions corre-
sponding to the use of solid materials of bronze and steel and lubricants of
paraffinic and naphthenic mineral oils were considered in obtaining the
exponent in the dimensionless materials parameter.

Plots were presented that indicate in detail the pressure distribution,
film shape, and flow within the contact. The characteristic pressure spike
was clearly in evidence as was the parallel film shape through the central
portion of the contact. Minimum film thickness occurred near the outlet of
the contact.

Natijonal Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, August 5, 1982
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TABLE I. - EFFECT OF DIMENSIONLESS LOAD
PARAMETER ON MINIMUM FILM THICKNESS

TABLE 1I1. - EFFECT OF DIMENSIONLESS SPEED
_PARAMETER ON_MINIMUM FILM THICKNESS

Force per Dimensionless | Dimensionless 7Surche Dimensionless | Dimensionless
unit Tength, load, film thickness, velocity, speed, film thickness,
W, W Hnin u, u Hmin
N;m m/S
-1 ; -6
40 000.0 | 1.6382x10-5 | 20.327x1076 0.297040 0.5x10 12.357x10
50 000.0 2.0478 19.71 -g;gggg -~ }g-;?%
60 000.0 2.4573 19.396 1.188160 2‘0 33.364
73 249.3 3.0000 19.055 y . c
1.782240 3.0 43,029
TABLE II1. - EFFECT OF DIMENSIONLESS MATERIALS PARAMETER ON
_ MINIMUM FILM THICKNESS
Solid | Lubricant |Dimensionless | Dimensionless | Dimensionless | Minimum film Hmin
material materials speed load thickness from [T = _5_77__6—77
parameter, parameter, parameter, EHL rectangular vttt W T
G U W theory,
] - L Hmin
Bronze | Paraffinic 2553.7 1.9579x10-11 | 4.0094x10-5 20.156x10-6 265.20
Bronze Naphthenic 3591.1 5.5975 4.0094 52.502 327.67
Steel ParaffinipﬂgﬂiVEQQO.O_ WJ:OQQO ) 2.0478 19.711 388.11
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TABLE IV. - EFFECT OF DIMENSIONLESS LOAD, SPEED, AND MATERIALS PARAMETERS ON MINIMUM FILM THICKNESS

Case Dimensionless Dimensionless Dimensionless | Dimensionless | Dimensionless Percentage Dimensionless |Percentage
load parameter, | speed parameter, materials film thickness | film thickness | difference film thickness |difference
W ] parameter, obtained from | obtained from | between H |, obtained from |between H
min min
G EHL theory, | least-squares and ﬁ Dowson (ref. 7), and (ﬁ )
' H . fit, min’ (H . min® *
min - min D
Hmin V] D v
2
] 1.6382x107° 1.0000x 10~ 5000.0 20.327x1076 20.510x1076 0.900 22.020x1076 7.362
2 .0478 J11 20.013 1.532 21.391 6.886
3 2.4573 19.396 19.616 1.134 20.890 6.495
4 3.0000 19.055 19.189 .703 20.355 6.076
5 2.0478 .50000 12.357 12.235 -.987 13.167 7.617 !
6 2.0478 .70000 15.482 15.536 .349 16.664 7.261 ‘
7 2.0478 2.0000 33.364 32.737 -1.879 34.749 6.146 ;
8 2.0478 3.0000 43.029 43.658 1.462 46.154 5.717
9 4.0094 1.9579 2553.7 20.156 20,420 1.310 21.826 6.885 g
10 4,0094 5.5975 3591.1 52.502 52.283 -.417 54.735 4.690 l




S SU U S A

|
1
i

OO~ N

TABLE V. - VALUES OF LOAD COMPONENTS, COEFFICIENT OF FRICTION, AND

Dimensionless
normal load,
W

1.6382x107°

2.0478
2.4573
3.0000
2.0478
2.0478
2.0478
2.0478
4.0094
4.0094

Dimensionless
tangential load,

wbx

2.0221x1078
-2939
2.4071
2.5448
1.5388
1.7647
2.7985
3.4243
4.1764
7.3268

LOCATION OF CENTER OF PRESSURE FOR 10 CASES EVALUATED

Coefficient

Dimensionless Dimensionless
of friction, center of center of
H pressure, pressure
XC obtained from
P lTeast-squares
fit,
X
cp
6.1716x107% -0.1912 -0.1881
5.6008 -.1552 -.1463
4.,8979 -.1240 -.1191
4,2414 ~.0971 -.0951
3.7572 -.1041 -.1080
4,3087 -.1194 -.1251
6.8330 -.1893 -.1982
8.3609 -.2317 -.2367
5.2082 -.1031 -.0921
9.1369 -.1810 -.1456
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